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ABSTRACT 
This paper investigates the multi-phase behaviour of droplets injected into a nozzle at two separate wall 
locations. The physical features of the droplets (rate of mass, density and radius) at each injector location 
are identical. This system can be described by a two-phase Eulerian-Eulerian approach that yields classical 
systems of equations: three for the gaseous phase and three for the dispersed droplet phase. 

An underlying assumption in the two phase model is that no interaction occurs between droplets. The 
numerical solution of the model (using the MacCormack scheme) indicates however that the opposite jets 
do interact to form one jet. This inconsistency is overcome in the current paper by associating the droplets 
from a given injection location with a separate phase and subsequently solving equations describing a 
multiphase system (here, three-phase system). Comparison of numerical predictions between the two-phase 
and the multiphase model shows significantly different results. In particular the multiphase model shows 
no jet interaction. 
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NOMENCLATURE 

D 
H 
n 
N 
P 
q 
R 
T 

diameter of droplets 
enthalpy 
number of droplets per unit volume 
total number of dispersed phases 
pressure 
heat transfer between gas and droplets 
radius of droplets 
temperature 

Vectors 
drag force 
velocity 
identity square matrix 

Subscripts 
d 
k 

droplet 
kth dispersed phase 

Greek characters 
α 
ε 
Γ 
μ 
p 
τ 

void fraction 
total energy per unit mass 
mass transfer 
gas viscosity 
density 
dynamic relaxation time 

INTRODUCTION 

Gas-particle flows have been studied intensively during the last decade, involving more realistic 
phenomena. In aerospace and combustion applications, reactive or turbulent effects are often 
added into the formation of the equations governing these flows, to reach an accurate knowledge 

0961-5539/94/030269-12$2.00 Received February 1993 
© 1994 Pineridge Press Ltd Revised September 1993 



270 E. DANIEL ET AL. 

of the flow field, in order to improve the design of liquid (or solid) rocket motors. One other 
centre of interest in such flows concern the multiphase flows due to injection of a dispersed 
phase into an initially one-phase flow1,2. This kind of problem could be found in the cooling 
of hot, high-speed jets or in instances related to nuclear reactor safety. Some recent numerical 
analyses regarding the influence of the injection of droplets on one-phase flow have been carried 
out in one-dimensional and two-dimensional geometries3,4. Numerical simulations have been 
hindered by the difficulty in treating the boundary between the one-phase and the two-phase 
flow. Essentially, the difficulties in these analyses are similar to those encountered when front 
tracking is performed. The model used is based on an Eulerian-Eulerian (or two-fluid) approach, 
where both the gaseous phase and the particle phase are treated as continua5,6. This approach 
is very useful when one is interested in solving the gas-particle flow on a scale which is large 
compared to the average spacing between particles. The main disadvantages are numerical 
instabilities and numerical diffusion. This last inconvenience could provide an explanation of 
the difficulty in calculating the propagation of a front of droplets. A Lagrangian treatment of 
the particle motion equations is an alternative method for tracking a front of droplets7,8. This 
technique is more accurate than the two-fluid one, but requires a large storage capacity to treat 
a large number of particles. In addition, the computational time is often much larger than that 
spent with a two-fluid model. 

In this study, a two-fluid approach is used to simulate a double injection of droplets in a 
two-dimensional nozzle flow. The injectors are located in the divergent part on the lower and 
upper walls of the nozzle, resulting in a symmetrical configuration. Generally, the two-fluid 
model is regarded as a description of a multiphase flow with one gaseous phase and one dispersed 
phase. The dispersed phase is characterised by the radius of the droplets, their density and their 
velocity. This yields six differential vector equations: i.e. three for each phase. A more general 
description is obtained for multiphase flow by considering N dispersed phases: the N dispersed 
phases being identified by different values of a parameter, e.g., a first phase is constituted of 
droplets of radius r1 and a second phase of droplets of radius r2 (r1 ≠ r2). In out case, the 
droplets injected from the two opposite injectors have initially the same features: same radius, 
same density and same rate of mass flow. Then a description of this dilute phase, by using the 
general equations (two-phase flows), is made and compared with a computation in which two 
dispersed phases are considered, in which each droplet stream is considered as a distinct dispersed 
phase. The results prove that the first approach is not compatible with the assumptions usually 
retained for such flow. One expects to find two jets of droplets crossing, but this only occurs 
when the second model is used. The concept of a droplet family is then established to give a 
more precise definition of a dispersed phase, including the history of the droplets. 

MATHEMATICAL MODEL 

The description of the two-phase flow produced by the injection of droplets in a gaseous nozzle 
flow uses an Eulerian-Eulerian model. Each phase is considered as a continuum. The main 
assumptions of the model are: 
• The gas is inviscid and obeys the ideal gas law 
• The dispersed phase is very dilute: any break-up, coalescence of droplets and interactions, 

e.g. droplet-droplet, droplet-wall, are ignored 
• N dispersed phases could be injected into the flow (N ≥ 1) 

The last assumption means that there may be several dispersed phases in the flow. For example, 
two dispersed phases could differ by the density or by the average radius of the droplets. Then, 
a general system of unsteady equations is written for the gas and for the dispersed phases, in 
two-dimensional planar coordinates. 
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The gas phase equations are written in a conservative form5,10: 

The following equations apply to the kth dispersed phase: 

The last equation expresses the fact that there is no break-up or coalescence of droplets in 
the flow. The energy equation for the dispersed phase is reduced to Td = Tsat(P): the droplet 
temperature is known and is equal to the saturation temperature which depends on the pressure. 

The right-hand side of this system contains the interaction terms between the gas and dispersed 
phases. The gas phase equations have been written by using an superposition principle for the 
effects: the drag force acting on the gas is the sum of the drag forces of the N dispersed phases, 
and the same for all the others transfer terms. The different terms are: 
• Γ mass transfer 
• q heat transfer 
• drag force 

The total system of equations is composed of three vector equations for the gas phase and 
3 * N vector equations for the N dispersed phases. In a majority of published works dealing 
with multiphase flows, N is equal to unity and the flow is a two-phase one. The system of 
equations is then reduced to six vector equations which can be obtained by letting N = 1 in the 
present model. There is no contradiction between the two models. The multiphase model is 
chosen here because it is the most general: it will be very useful to show the importance of the 
definition of a dispersed phase and it will be actually applied to the cases of N = 1 and N = 2. 
A discussion will be presented later in the paper regarding the definition of a dispersed phase 
and about the term 'family' which will be introduced as more convenient and illuminating. 

The decomposition of this system along the x and y axes yields the following differential 
vector equation: 

Ut + Fx + Gy + H = 0 (3) 
where 

U = (αp; αpug; αpε g ; · · · [(1 – αtdk)pdk; (1 – αdk)pdkudk; ndk]k=1,N) 
The expression of the other vectors F, G and H is straightforward and will not be presented here. 

The several void fractions appearing in the equations are now defined: 
• α is the global void fraction appearing only in the gas equations. This quantity is obviously 

independent of the value of N and only related to the volume occupied by the gas and the 
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volume of the dispersed phases. This quantity is given by the relation: 

(The reference volume dΩ is taken as a unity volume). 
• αdk is a pseudo-void fraction referring to the kth dispersed phase (a real void fraction of the 

kth phase must take into account the volume occupied by the gas and the other dispersed 
phases): 
The volume occupied by this kth dispersed phase is , then this void fraction αdk is 
given by: 

One could also define the presence of the kth phase by , then the global void 
fraction α can be expressed by the general relation: 

Besides, the assumptions of dilute dispersed phases allows the assumption that terms 
and negligible with regard to the transfer terms. 

Expression of the transfer terms 
The expression of the mass transfer is deduced from an energy balance around a droplet. The 

droplet temperature is that of saturation and the total heat coming from the gas is only utilised 
for vaporisation. Then the energy balance equation can be written as follows: 

LvΓk = qk with Lv the specific latent heat vaporisation 
A classical correlation with the Nusselt number is used to obtain the expression for the heat 

transfer. However phase change alters heat transfer. Yuen and Chen11 who showed the diminution 
of heat transfer due to mass transfer proposed the application of a correction to the Nusselt 
number as follows: 

with as a classical correlation for an inert particle. , 

where Hk is the enthalpy per unit of mass of the phase k. 
The drag force is taken as: 

The expression of is issued from empirical correlations: 

The correction applied to the Nusselt number is extended to the drag coefficient as proposed 
by Chung and Olafsson12. This correction is not so strict as in the case of heat transfer but it 
is merely a way of taking into account alterations in the drag effects due to mass transfer. 
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The particle Reynolds number is given by: 

To evaluate these exchange terms, the diameter of the droplets at every time step and every 
location in the grid must be known. Because of the mass transfer, the size of the droplets changes 
and the new calculated diameter is given by the following relation: 

The number of droplets per unit volume, nk, is obtained directly from the system of equations 
while the void fraction is deduced from the relation 1 – αdk = [pd(1 – αdk)]computed/pd. This 
relation can be applied because the droplet density is constant. 

Every thermophysical variables μ, γ are assumed to be constant, except the saturation 
temperature, the latent heat of vaporisation and the droplet enthalpy, which depend on the gas 
pressure. The liquid phase is in a state of equilibrium saturation. 

NUMERICAL PROCEDURE 

The two-step MacCormack explicit finite-difference scheme is applied to the partial differential 
equations in a computational square domain (ξ, η). The transformed equations take the following 
form: 

with 

where D is the Jacobian of the transformation. 
Applying the algorithm for (5) yields a predictor-corrector scheme: 

Predictor: 

Corrector: 

The physical domain of integration is the entire nozzle. In this physical domain the lower 
wall of the nozzle can be represented by the function RL(x) and the upper wall by RU(x). This 
last relation is deduced from RL(x) by symmetrical condition about the nozzle median plane. 
The coordinate transformation is given by: 

ξ(x, y) = x/L 

where L is the nozzle length. 
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Figure 1 shows the 75 * 22 computational grid used in this study. The length of the nozzle is 
0.1 m, the convergent and divergent angles are equal to 15°. The geometrical features of the 
nozzle are quite simple: a solution of the multiphase flow in a complex geometry could mask 
some of fundamental effects we would point out. 

Boundary conditions 
Three kinds of boundary conditions in such a flow must be considered: inflow, outflow and wall. 

At the wall 
Computation of variables along the body surface is a difficult problem because if the gas 

phase is inviscid, then only one condition is generally assumed, the slip condition . The 
treatment of boundary conditions is different for the gas phase and for the dispersed one. 
Gas phase 

The system of conservative equations (5) is solved using the MacCormack scheme. Spatial 
derivatives are approximated by an upwind second-order scheme13. For example, this technique 
applied to equations related to the upper wall leads to derivatives given by: 
Predictor step: 

Corrector step: 

(Then the scheme is also second-order accurate in space at the wall.) 
After each stage the slip condition is computed as below: 

v = ηx/ηyu (10) 
Dispersed phase 

The MacCormack scheme is also applied to compute the conservative dispersed phases 
variables at the wall. But if an upwind second order discretization is used, the solution cannot 
be reached because of instabilities. Then spatial derivatives are evaluated with a one-sided 
formula and relation (9) becomes: 

(Some other low-order methods can be applied to compute the droplet variables at the wall: 
e.g. linear extrapolation from interior points5.) 

A zero normal component of the velocity is also imposed for these phases. 
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Inflow and outflow boundary conditions 
Gas phase 

At the inlet, the flow is assumed to be adiabatic and isentropic. Compatibility equations along 
the direction ug — c, where c is the sound velocity in the gas, are used to obtain the velocity 
component u, while component v is taken equal to zero. 

with for the equation along the direction ug – c. 

At the outlet cross section, if the outflow is subsonic, the ambient pressure is specified. Two 
compatibility equations along the directions ug and ug + c are solved: 

The terms A, B, C represent respectively the source terms of the equation of mass, momentum 
and energy of the gas phase. They must appear in the equations to take into account the possible 
multiphase characteristics of the flow. 

If the flow is supersonic, conservative variables are extrapolated. 
Dispersed phase 

At the inlet or at the location of injection, information such as velocity, diameter, density 
number is specified. At the outlet, the droplets are only allowed to exit the nozzle, then 
conservative variables are extrapolated. 

RESULTS 

The two-dimensional unsteady equations are solved in two different cases related to the number 
of dispersed phase: N = 1 and N = 2. In both cases, initial values of the gas phase variables 
are identical. A converged calculation of inviscid one-phase flow equations provides these data. 
The flow is supposed to be generated by a tank, with constant pressure (Ptank) and temperature 
(Ttank) even in a multiphase calculation. The initial condition is chosen to provide a subsonic 
flow: the Mach number at the throat vicinity is about 0.7. 

The droplets are injected into the flow from the upper and the lower walls between the 
locations x1 = 7.1 cm and x2 = 7.5 cm (η = 0 and η = 1). Whatever the value of N, initial data 
for the dispersed phase are identical at the lower and upper injectors: same diameter, same rate 
of mass, same number of droplets per unit volume. The specification of this information at the 
injectors also represents boundary conditions which shall remain constant. At time t = 0 s, the 
difference between the cases N = 1 and N = 2 is not quantitative but qualitative. If N = 1 then 
computation consists in solving two-phase dynamics flow equations: one gaseous phase and 
one dispersed phase made up of droplets. If N = 2, the equations represent a multiphase flow: 
one gaseous phase and two dispersed phases: one is injected at the lower wall while the second 
at the upper wall. There is no quantitative difference between these two cases because of identical 
initial data. In Table 1 are summarised the main droplets values utilised in solving the multiphase 
flow equations. 
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Table 1 Multiphase flow data 

Gas phase Particle phase 

Cp= 1032.5 J kg - 1 K - 1 D0 = 50 μm 
γ= 1.4 U0 = 25m s-1 

μ=1.3 × 10-5 Pa·s n0 = 0.1 × 1012 m-3 

Pr = 0.56 Rate of mass = 0.52 kg s-1 

Ptank = 4.5 bars 
Ttank = 900 K 
Rate of mass = 5.2 kg s-1 

1 Case N = 1 
As said previously, the equations for N = 1 correspond to a two-phase flow. In this case there 

is only one void fraction: α = αd1. The time step used to solve the system of equations is taken 
as 1/3 the CFL number. In the next analysis only the steady state is considered. 

In Figure 2 the iso-numbers of droplets per unit volume are plotted (these values have been 
normalised by the injected density number n0). One can easily observe the positions of the 
injectors. One can notice that droplets do not fill the whole divergent: beyond the injectors there 
are two kinds of flow: a single-phase, near the wall and a two-phase region in the middle of the 
flow stream. Only one jet is observed at the exit from the nozzle. The two jets from the opposite 
injectors meet each other when they reach the axis of the nozzle and turn into a single jet. 

One can also notice the discontinuity of the component v along the y axis of the droplets as 
shown in the Figure 3. On the nozzle axis, vd = 0 ms -1. This value can be explained by considering 
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fluxes in a computational cell on the axis (j = Jaxis). Before droplets reach this position, the 
quantity (1 – α)pdvd]n is equal to zero. At the following time step, (1 – α)pdvd]n+1 could change 
only with incoming fluxes of (1 – α)pdvd]n. Due to the centred approximation of the derivatives, 
the expression of fluxes at Jaxis is evaluated with only the quantities at Jaxis+1 and Jaxis-1. They 
have same value and opposite sign, then their sum is equal to zero, and this implies a resulting 
(1 – α)pdvd]n+1 = 0. This means that all the momentum along x and y is turning into momentum 
along x. If the profile of vd is considered, it seems that the droplet flow on the side and the other 
side of the nozzle axis, ignored what happens on the axis. The value of vd is developing due to 
drag action and yields the discontinuity. This behaviour is due to the parabolic nature of the 
system of equations of the dispersed phase: no information goes backwards to the injector, in 
other words the droplet front ignores what happens downstream. (See the Appendix regarding 
the nature of the system of equations.) This provides an explanation about the discontinuity of vd. 

The calculation of two opposite injections has been achieved that yields a two-phase flow 
with only one jet of droplets at the exit cross section. It is a trivial remark to say that the two 
jets have not crossed one another. This result is in contradiction with one assumption presented 
earlier: droplet-droplet interactions are neglected because the dispersed phase is very dilute. 
This assumption allows a crossing of the two jets of droplets, which does not occur in the results 
presented. We conclude that the model with N = 1 used before is not consistent with such initial 
and boundary conditions. 

The multiphase flow produced by these two injections may be a two-phase flow in the common 
sense: a gaseous phase and a droplet phase. But strictly speaking, it is a multiphase flow, here 
a three-phase flow: one gaseous phase and two dispersed phases with identical thermo-dynamical 
and dynamical characteristics. The presence of the two different dispersed phases is explained 
by the fact that they must ignore each other. In order to distinguish the different cases we are 
now to define the term 'family' introduced previously in this paper. 

2 Family of droplets 
It is well known that if a particle is introduced into a gaseous flow, it is necessary to solve 

as many systems for the dispersed phase as there are different radii of the droplets. In other 
words, as many different particle families must be considered as there are different radii of droplets. 

It is not the only case where the introduction of several families is necessary. An example is 
given by multiphase flows in which the dispersed phase is injected by N injectors (N ≥ 2). Then, 
it is no longer possible to take into account the possible covering of a geometrical point of the 
flow by particles with different histories (here, particles coming from different injectors). So, one 
system of equations only is not able to describe such a flow. 

It seems that, for such multiple-injections problems, it would be preferable to create several 
families, if: 
• two particles may be at the same place in the same time 
• one particle may be back at the same place at two different times 
(This case should also be considered when the dispersed phase reflects on a wall, or more 
generally, changes the direction.) 

Then the case N = 2, named multiphase flow, could be called 'injection of two families of 
droplets'. 

3 Case N = 2 
Now the results of the injection into the flow of two families of droplets are presented. The 

system integrated here is formed by 12 differential scalar equations: 4 for the gas, 4 for the first 
family (k = 1, injected from the lower wall), and 4 equations for the second family (k = 2, from 
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the upper wall). The time step used is equal to 1/3 the CFL number and only the steady state 
is analysed. Initial and boundary conditions are the same as those presented before. 

In Figure 4, the iso-number curves of droplets per unit volume are plotted for the families 1 
and 2. The evolution of this variable is absolutely symmetrical, because of the symmetrical initial 
and boundary conditions. In Figure 5 the previous contours are superposed in order to show 
where the multiphase flow is exactly in the nozzle. Clearly, in this image, the crossing of the 
two jets can be easily observed. 

The different treatment of the multiphase flow in these two cases (N = 1 and N = 2), alters 
the gas evolution. In Figure 6 the isovelocity lines of the gas phase are drawn for N = 1 and 
N = 2. In both cases symmetrical isolines are observed, but differences may be seen between 
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these two figures. One can notice a difference about 10 ms-1 between the minimum and the 
maximum values of the velocity between these two cases. The gas flow is affected in different 
ways by the presence of droplets or, more precisely, by the presence of one or two families. 

CONCLUSION 

The numerical simulation of the flow of droplets through two injectors in a gaseous compressible 
flow has been achieved and several conclusions can be reached as a result of this study. We 
were not interested in the quantitative data: results are significant enough to be discussed without 
considering actual values. The main problem encountered in this study lies in the usual definition 
of a two-phase flow, which might be not representative of reality. In previous two-phase flow 
studies, one only considers a gaseous phase and a dispersed phase, the last phase being known 
when information such as diameter, velocity and density is given. In the case of multiple injections, 
it is shown that this definition is not general enough and could lead to false results. Here, the 
calculation should have shown two crossing droplets jets according to the assumptions made, 
and this phenomenon was not observed. So, a more accurate description of the dispersed phase 
is proposed, where history is taken into account. 

The notion of family has been introduced, which yields a more complicated system of equations. 
The solution of the system has shown the expected crossed jets. 

One can reasonably think that this is not the real phenomenon: when jet crossing is simulated 
the assumption of no droplet-droplet interaction may be no longer valid. But the results obtained 
seem to show that the numerical treatment with N families is more realistic than with only one 
family. The definition of a family may not be exhaustive. For example, this problem is also 
encountered when a family of droplets reaches a wall: droplets may stick or reflect but they do 
not belong any more to the same family as before hitting the wall. 

APPENDIX 

The nature of the system of equations for a dilute multiphase flow is now studied in the 
one-dimensional case. Then, every gradient terms of the right-hand side can be neglected. The 
system is written in one dimensional form: Ut + AUx + H = 0 where A is the Jacobian 

matrix . 

A change of variables is performed in order to facilitate the demonstration. The components 
of the vector U are now given by: 
U = (rg = αp; mg = αpu g ; Eg = αpεg; · · · [rdk = (1 - αdk)pdk; mdk = (1 - αdk)pdkudk; Ndk = ndk]k=1,N) 

There is no difficulty in finding that the Jacobian matrix takes the following form: 

A is a block diagonal matrix, with block Ag related to the gaseous phase and Adk to the kth 
dispersed phase. The nature of the system is obtained by finding the eigenvalues of A, given by 
the solution of DET = det(AT – λId) = 0. The diagonal form of A allows us to write: 
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The eigenvalues are: 
λg1 = mg/rg - c = ug - c 
λg2 = mg/rg = ug 

λg2 = mg/rg + c = ug + c 
with 

and 
λdk1 = λdk2 = λdk3 = mdk/rdk = udk (k = 1, N) 

The three eigenvalues of the kth dispersed phase are real and equal. 
If each phase is considered then the gas equations are hyperbolic, and the equations for each 

dispersed phase equations are parabolic. The whole system is a degenerate hyperbolic one. 
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